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A General View

Determined (m=mn):

Over-Determined (m>n): arg m%Rn | Ax — y||2 ﬂ I I
reR™ ~
v = (ATA) ATy = Aty

Under-Determined (m<n): arg min {||z||> such that Az = y}

-

z=AT (AAT) 'y = Aty



Fitting Data

Hypothesis: y = f(z;8) = Y _ Bjp;(x)

A linear model (in the unknown parameters f3;)



Fitting Data

X

Small error, noise
It is unlikely we achieve y; = f(x:;8) Vi = y; = f(zi; 5) +

Y1 p1(z1) ... palT1) b1 1
Set y(;)eRm A= : : cR™™ g=|:|eR* =] : | cR™
Ym 1(Tm) oo Pn(Tm) By Om



Fitting Data

LS will minimize the Euclidean norm of error: arg mIiRn Az — y|2
TrElR™

Assuming A is a tall, full-rank matrix (i.e rank(A) = n):

v = (ATA) ATy



Example: Polynomial Regression

Problem: fit a polynomial of degree < n,
p(t) = Bo+ Pt + ...+ Bprt"

to data (z,y,), i=1...m

: 1 t; t2 ¢yt

. . . ) _ J_]_ 1 1
Basis functions: ¢;(t) =1 R o1
Matrix form: A;; = ;(t;) =t/ 71 1 t, 2 - ¢!

Vandermonde matrix

trx # ty for kK # £ and m > n = A has full rank n



From regression to classification

Linearly separable data (2 classes):
There exists a hyperplane that separates data space in two regions, each

containing only one class.

Separating hyperplane or

Linear Discriminant Function7



From regression to classification

Linearly separable data (2 classes):

.. y(z) = w!z + wy, data point z € R”
‘. m ™ = weight vector w € R"
‘EHE
AN bias wg € R
3
h
3 . ° .
N Classification rule: sign(y(x))

Separating hyperplane or

Linear Discriminant Function



From regression to classification

Linearly separable data (2 classes):

Loss: Penalty occurring when mis-predicting sign(y)

O
Ss . . N
‘mm”™® For a data point z with label ¢t € {0,1}
s
K 0 ifsign(y(z)) =t
Y Lzero—one<y(x)a t) — { T
AR 1 if sign(y(x)) # ¢

Learning: Using labeled training examples,
find the optimal weight vector that

minimises the loss ,



From regression to classification

Linearly separable data (2 classes):

A Least Squares formulation

- l. N . “Extension” trick: & = (wg,w) € R"t!
Ss‘. B [ j:(l,x)ERn_‘_l
AR y(x) — 0T
3
h
T Loss: forget the binary nature of the prediction

and use squared error

Lequarea (y(z), ) = (sign(y(z)) —t)°

quuared (y(CE), t) — (y(ﬂﬁ) o t)2
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From regression to classification

Linearly separable data (2 classes):

A Least Squares formulation

.. 8 M “Extension” trick: & = (wg,w) € R"t!
A3
. ~
KR y(z) = w7 i
s
S
> o =
. m training samples data matrix X € R(™tDxm

m

Ltrain — Z(yz — @Ti’b)

=1

Ltrain — HXT'JJ - y”%
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head dlameter imm)

From regression to classification

Linearly separable data (2 classes):

v
T

3
T

w
T

N
T

o

length {cm)

A Least Squares formulation

“Extension” trick: & = (wg,w) € R"t!
= (1,z) e R"*!

y(x) =’z

m training samples data matrix X € R(?tDxm
m

Ltrain — Z(yz — @Til)

=1

Ltrain — HXT'JJ - y”%
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System Identification

Basic problem: you observe the input u(f) and the corresponding output y(7)
of an unknown linear system H. Our goal is to identify a good

model for the system’s action: y(t) = H u(t), where H is linear

u(t) (1)

v
v

Example: moving average model

y(t) = hou(t) + hyu(t — 1) + ...+ hpu(t —n), where hg,...h, € R

13



System Identification

u(?) : y(?)

y(t) = hou(t) + hqu(t — 1) + ... + hpu(t —n), where hg,...h, € R

Matrix form:
y(n) u(n) u(n — 1) ... u(0) ho
y(n+1) u(n +1) u(n) (1) h1

y(n+m) u(n+m) u(n—l—m— 1 ... u(m) h.n



System Identification

u 10

Example:



Prediction / Forecasting /
Modelling

Goal: given n past observations z of a time series, predict the next sample

Example: the autoregressive AR(n) model

r(N)=c+hiz(N —1)4+ hyx(N —2)+ ...+ hpx(N —n) + 6y

Example:



Note: Model order selection

Think of linear regression with polynomials
The larger the order of the model, the lower the error on the data used for training
BUT prediction/modeling power on unseen data becomes worse

Solution: Cross-Validation - evaluate performance of model order

on data not used for training it

0.8
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relative prediction error

modeling data
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Streaming Measurements and
Recursive Least Squares

If we view the Least Squares in row form:

m
minimize {HA.’E —yll3 = Z }
i=1

m linear observations of the unknown z

Each row performs a measurement a/x ~ y,

Find the x that best explains the measurements

And the solution is written (interms of rows) as:

sum of measurements vectors a,,

weighted by observations y;
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Streaming Measurements and
Recursive Least Squares

Now observations come in stream, so we keep adding information about z

m

x(m) = (Z am?) B g Yi Qi

1=1

Our goal is to recursively compute the solution as measurements come

z(m) = P(m)~'q(m)
Easy !

P(m+1) = P(m) + apmi105,4 g(m+1) = q(m) + ym+1am41

Challenge: compute the inverse of this rank-1 update efficiently
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Streaming Measurements and
Recursive Least Squares

P(m+1) = P(m) + ami105,4 g(m+1) = q(m) + Ym+1am41

Remark: as P(m) becomes invertible, it will remain so when we add rows

We can compute P(m + 1)~! using the Sherman-Morrison formula:

1
T\—1 _ p—1 _ ~1 —1 \T
(P+aa" )" =P ot —1a(P a)(P™"a)

P non-singular and symmetric

Cost = O(n?) instead of O(n>) 20



